Skip to main content
Log in

Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O.S. Amudaa, I.A. Amoob, Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 141, 778–783 (2007)

    Article  Google Scholar 

  2. J.P. Kushwaha, V.C. Srivastava, I.D. Mall, An overview of various technologies for the treatment of dairy wastewaters. Crit. Rev. Food Sci. Nutr. 51, 442–452 (2011)

    Article  Google Scholar 

  3. M. Passeggi, I. Lopez, L. Borzacconi, Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci. Technol. 59, 501–506 (2009)

    Article  Google Scholar 

  4. J.R. Pan, C.P. Huang, S.C. Chen, Y.C. Chung, Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles. Colloids Surf. A 147, 359–364 (1999)

    Article  Google Scholar 

  5. A.T. Dawood, A. Kumar, S.S. Sambi, Study on anaerobic treatment of synthetic milk wastewater under variable experimental conditions. Int. J. Environ. Sci. Dev. 2(1), 17–23 (2011)

    Google Scholar 

  6. B.S. Bhadouria, V.S. Sai, Utilization and treatment of dairy effluent through biogas generation—a case study. Int. J. Environ. Sci. 1(7), 1621–1630 (2011)

    Google Scholar 

  7. S. Dipu, A. Anju, V. Kumar, S.G. Thanga, Phytoremediation of dairy effluent by constructed wetland technology using wetland macrophytes. Glob. J. Environ. Res. 4, 90–100 (2010)

    Google Scholar 

  8. M.G. Healy, Biotreatment of Marine Crustacean and Chicken Egg Shell Waste, Environmental Biotechnology: Principles and Applications (Kluwer Academic Publishers, Dordrecht, Netherlands, 1995), pp. 302–319

    Google Scholar 

  9. M. Rao, A.G. Bhole, Removal of organic matter from dairy industry waste water using low cost adsorbents. J. Indian Chem. Eng. Sect A 44(1), 25–28 (2002)

    Google Scholar 

  10. S. Taha, D. Tremaudan, G. Dorange, Comparative study of coagulation- decantation and UF for elimination of organic carbon from dairy waste water. Recent Prog. Genie Proced. 9, 55–60 (1995)

    Google Scholar 

  11. B. Sarkar, P.P. Chakrabarti, A. Vijaykumar, V. Kale, Waste water treatment in dairy industries—possibility of reuse. Desalination 195, 141–152 (2006)

    Article  Google Scholar 

  12. G. Vidal, A. Carvalho, R. Mendez, J.M. Lema, Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour. Technol. 74, 231–239 (2000)

    Article  Google Scholar 

  13. B. Balannec, G. Gesan-Guiziou, B. Chaufer, M. Rabiller-Baudry, G. Daufin, Treatment of dairy process waters by membrane operations for water reuse and milk constituents concentration. Desalination 147, 89–94 (2002)

    Article  Google Scholar 

  14. I. Koyuncu, M. Turan, D. Topacik, A. Ates, Application of low pressure nanofiltration membranes for the recovery and reuse of dairy industry effluents. Water Sci. Tech 41(1), 213–221 (2000)

    Google Scholar 

  15. S.S. Madaeni, Y. Mansourpanah, Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination 161, 13–24 (2004)

    Article  Google Scholar 

  16. D. Abdessemed, G. Nezzal, Treatment of primary effluent by coagulation–adsorption–ultrafiltration for reuse. Desalination 152, 367–373 (2002)

    Article  Google Scholar 

  17. S.L. Kim, J. Paul Chen, Y.P. Ting, Study on feed pretreatment for membrane filtration of secondary effluent. Sep. Purif. Techol. 29, 171–179 (2002)

    Article  Google Scholar 

  18. W.S. Guo, S. Vigneswaran, H.H. Ngo, H. Chapman, Experimental investigation of adsorption–flocculation–microfiltration hybrid system in wastewater reuse. J. Membr. Sci. 242, 27–35 (2004)

    Article  Google Scholar 

  19. A.M. Salcedo Vieira, M.F. Vieira, G.F. Silva, Á.A. Araújo, M.R. Fagundes-Klen, M.T. Veit, R. Bergamasco, Use of Moringa oleifera Seed as a natural adsorbent for wastewater treatment. Water Air Soil Pollut. 206, 273–281 (2010)

    Article  Google Scholar 

  20. P.A. Sandford, Chitosan: Commercial uses and potential applications, in Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, ed. by G. Shjak-Braek, T. Anthonsen, P. Sandford (Elsevier Applied Science, London, 1989), pp. 51–69

    Google Scholar 

  21. C.Y. Kim, H.M. Choi, H.T. Cho, Effect of deacetylation on sorption of dyes and chromium on chitin. J. Appl. Polym. Sci. 63, 725–736 (1997)

    Article  Google Scholar 

  22. M.C. Garcia, A.A. Szogi, M.B. Vanotti, J.P. Chastain, P.D. Millner, Enhanced solid–liquid separation of dairy manure with natural flocculants. Bioresour. Technol. 100(22), 5417–5423 (2009)

    Article  Google Scholar 

  23. D. Knorr, Dye binding properties of chitin and chitosan. J. Food Sci. 48, 36–41 (1983)

    Article  Google Scholar 

  24. R.S. Juang, R.L. Tseng, F.C. Wu, S.J. Lin, Use of chitin and chitosan in lobster shell wastes for color removal from aqueous solutions. Environ. Sci. Health Part A 2, 1207–1214 (1996)

    Google Scholar 

  25. C.L. Lasco, M.P. Hurst, Investigation into use of chitosan for the removal of soluble silver from industrial wastewater. Environ. Sci. Technol. 20, 3622–3626 (1999)

    Article  Google Scholar 

  26. R. Bassi, S.O. Prasher, B.K. Simpson, Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep. Sci. Technol. 35(4), 547–560 (2000)

    Article  Google Scholar 

  27. R.A.A. Muzzarelli, M. Weckx, F.O. illippini, S.F. Igon, Removal of trace metal ions from industrial waters, nuclear effluents and drinking water, with the aid of cross-linked N-carboxy methyl chitosan. Carbohydr. Polym. 11(4), 293–306 (1989)

    Article  Google Scholar 

  28. B. Pesic, D.J. Oliver, R. Raman, C.L. Lasko, Application of natural polymers for removal of heavy metals from aqueous solutions sorption of copper by the modified chitosan. Met. Mater. Soc. (TMS) 3, 257–268 (1994)

    Google Scholar 

  29. M. Rinaudo, G. Pavlov, J. Desbrieres, Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40, 7029–7032 (1999)

    Article  Google Scholar 

  30. P. Sorlier, A. Denuziere, C. Viton, A. Domard, Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2(3), 765–772 (2001)

    Article  Google Scholar 

  31. S.P. Strand, M.S. Vandvik, K.M. Vårum, K. Østgaard, Screening of chitosan and conditions for bacterial flocculation. Biomacromolecules 2, 121–133 (2001)

    Google Scholar 

  32. M.W. Anthonsen, O. Smidsrod, Hydrogen-Ion titration of chitosan’s with varying degrees of N-Acetylation by monitoring induced H-1- Nmr chemical-shifts. Carbohydr. Polym. 26(4), 303–305 (1995)

    Article  Google Scholar 

  33. K.M. Varum, M.H. Ottoy, O. Smidsrod, Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerization. Carbohydr. Polym. 25, 65–70 (1994)

    Article  Google Scholar 

  34. K. Kurita, T. Sanna, Y. Iwakura, Studies on chitin VI. Binding of metal cations. J. Appl. Polym. Sci. 23, 511–518 (1979)

    Article  Google Scholar 

  35. American Public Health Association (APHA-AWWAWPCH), Standard Methods for the Examination of Water and Waste Water, 20th edn. (APHA, Washington DC, 1998), p. 1270

    Google Scholar 

  36. A. Domard, M. Rinaudo, C. Terrassin, Adsorption of chitosan and a quarternized derivative on kaolinite. J. Appl. Polym. Sci. 38, 1799–1806 (1989)

    Article  Google Scholar 

  37. A.L. Ahmad, S. Sumathi, B.H. Hameed, Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, Alum and PAC. J. Chem. Eng. 118, 99–105 (2006)

    Article  Google Scholar 

  38. M.A. Abu Hassan, T.P. Li, Z.Z. Noor, Coagulation and flocculation treatment of wastewater in textile industry using chitosan. J. Chem. Nat. Resour. Eng. 4(1), 43–53 (2009)

    Google Scholar 

  39. T. Takahashi, M. Imai, I. Suzuki, High-potential molecular properties of chitosan and reaction conditions for removing p-quinone from the aqueous phase. J. Biochem. Eng. 25, 7–13 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Mr. Saif, College of Science, Sultan Qaboos University, Sultanate of Oman for capturing high resolution Scanning Electron Microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Geetha Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geetha Devi, M., Dumaran, J.J. & Feroz, S. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan. J. Inst. Eng. India Ser. E 93, 9–14 (2012). https://doi.org/10.1007/s40034-012-0005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-012-0005-2

Keywords

Navigation